33 research outputs found

    Physics-Informed Neural Networks for Non-linear System Identification applied to Power System Dynamics

    Full text link
    Varying power-infeed from converter-based generation units introduces great uncertainty on system parameters such as inertia and damping. As a consequence, system operators face increasing challenges in performing dynamic security assessment and taking real-time control actions. Exploiting the widespread deployment of phasor measurement units (PMUs) and aiming at developing a fast dynamic state and parameter estimation tool, this paper investigates the performance of Physics-Informed Neural Networks (PINN) for discovering the frequency dynamics of future power systems and monitoring the system inertia in real-time. PINNs have the potential to address challenges such as the stronger non-linearities of low-inertia systems, increased measurement noise, and limited availability of data. The estimator is demonstrated in several test cases using a 4-bus system, and compared with state of the art algorithms, such as the Unscented Kalman Filter (UKF), to assess its performance.Comment: 6 pages, 8 figures, submitted to 59th Conference on Decision and Contro

    Capturing Power System Dynamics by Physics-Informed Neural Networks and Optimization

    Full text link
    This paper proposes a tractable framework to determine key characteristics of non-linear dynamic systems by converting physics-informed neural networks to a mixed integer linear program. Our focus is on power system applications. Traditional methods in power systems require the use of a large number of simulations and other heuristics to determine parameters such as the critical clearing time, i.e. the maximum allowable time within which a disturbance must be cleared before the system moves to instability. The work proposed in this paper uses physics-informed neural networks to capture the power system dynamic behavior and, through an exact transformation, converts them to a tractable optimization problem which can be used to determine critical system indices. By converting neural networks to mixed integer linear programs, our framework also allows to adjust the conservativeness of the neural network output with respect to the existing stability boundaries. We demonstrate the performance of our methods on the non-linear dynamics of converter-based generation in response to voltage disturbances.Comment: 6 pages, 5 figures, submitted to the 60th IEEE conference on Decision and Control (CDC), 2021, Austin, Texas, US

    Zero-inertia Offshore Grids: N-1 Security and Active Power Sharing

    Full text link
    With Denmark dedicated to maintaining its leading position in the integration of massive shares of wind energy, the construction of new offshore energy islands has been recently approved by the Danish government. These new islands will be zero-inertia systems, meaning that no synchronous generation will be installed in the island and that power imbalances will be shared only among converters. To this end, this paper proposes a methodology to calculate and update the frequency droops gains of the offshore converters in compliance with the N-1 security criterion in case of converter outage. The frequency droop gains are calculated solving an optimization problem which takes into consideration the power limitations of the converters as well as the stability of the system. As a consequence, the proposed controller ensures safe operation of off-shore systems in the event of any power imbalance and allows for greater loadability at pre-fault state, as confirmed by the simulation results.Comment: Submitted to "IEEE Transactions on Power Systems" on February 19, 202

    On the Dynamics of the Deployment of Renewable Energy Production Capacities

    Full text link
    This chapter falls within the context of modeling the deployment of renewable en-ergy production capacities in the scope of the energy transition. This problem is addressed from an energy point of view, i.e. the deployment of technologies is seen as an energy investment under the constraint that an initial budget of non-renewable energy is provided. Using the Energy Return on Energy Investment (ERoEI) characteristics of technologies, we propose MODERN, a discrete-time formalization of the deployment of renewable energy production capacities. Be-sides showing the influence of the ERoEI parameter, the model also underlines the potential benefits of designing control strategies for optimizing the deployment of production capacities, and the necessity to increase energy efficiency.Peer reviewe

    On machine learning-based techniques for future sustainable and resilient energy systems

    Get PDF
    Permanently increasing penetration of converter-interfaced generation and renewable energy sources (RESs) makes modern electrical power systems more vulnerable to low probability and high impact events, such as extreme weather, which could lead to severe contingencies, even blackouts. These contingencies can be further propagated to neighboring energy systems over coupling components/technologies and consequently negatively influence the entire multi-energy system (MES) (such as gas, heating and electricity) operation and its resilience. In recent years, machine learning-based techniques (MLBTs) have been intensively applied to solve various power system problems, including system planning, or security and reliability assessment. This paper aims to review MES resilience quantification methods and the application of MLBTs to assess the resilience level of future sustainable energy systems. The open research questions are identified and discussed, whereas the future research directions are identified

    Neural Networks for Encoding Dynamic Security-Constrained Optimal Power Flow to Mixed-Integer Linear Programs

    Full text link
    This paper introduces a framework to capture previously intractable optimization constraints and transform them to a mixed-integer linear program, through the use of neural networks. We encode the feasible space of optimization problems characterized by both tractable and intractable constraints, e.g. differential equations, to a neural network. Leveraging an exact mixed-integer reformulation of neural networks, we solve mixed-integer linear programs that accurately approximate solutions to the originally intractable non-linear optimization problem. We apply our methods to the AC optimal power flow problem (AC-OPF), where directly including dynamic security constraints renders the AC-OPF intractable. Our proposed approach has the potential to be significantly more scalable than traditional approaches. We demonstrate our approach for power system operation considering N-1 security and small-signal stability, showing how it can efficiently obtain cost-optimal solutions which at the same time satisfy both static and dynamic security constraints

    Systematic sensitivity analysis of the full economic impacts of sea level rise

    Get PDF
    The potential impacts of sea level rise (SLR) due to climate change have been widely studied in the literature. However, the uncertainty and robustness of these estimates has seldom been explored. Here we assess the model input uncertainty regarding the wide effects of SLR on marine navigation from a global economic perspective. We systematically assess the robustness of computable general equilibrium (CGE) estimates to model’s inputs uncertainty. Monte Carlo (MC) and Gaussian quadrature (GQ) methods are used for conducting a Systematic sensitivity analysis (SSA). This design allows to both explore the sensitivity of the CGE model and to compare the MC and GQ methods. Results show that, regardless whether triangular or piecewise linear Probability distributions are used, the welfare losses are higher in the MC SSA than in the original deterministic simulation. This indicates that the CGE economic literature has potentially underestimated the total economic effects of SLR, thus stressing the necessity of SSA when simulating the general equilibrium effects of SLR. The uncertainty decomposition shows that land losses have a smaller effect compared to capital and seaport productivity losses. Capital losses seem to affect the developed regions GDP more than the productivity losses do. Moreover, we show the uncertainty decomposition of the MC results and discuss the convergence of the MC results for a decomposed version of the CGE model. This paper aims to provide standardised guidelines for stochastic simulation in the context of CGE modelling that could be useful for researchers in similar settings

    Global electricity network - Feasibility study

    Full text link
    With the strong development of renewable energy sources worldwide, the concept of a global electricity network has been imagined in order to take advantage of the diversity from different time zones, seasons, load patterns and the intermittency of the generation, thus supporting a balanced coordination of power supply of all interconnected countries. The TB presents the results of the feasibility study performed by WG C1.35. It addresses the challenges, benefits and issues of uneven distribution of energy resources across the world. The time horizon selected is 2050. The study finds significant potential benefits of a global interconnection, identifies the most promising links, and includes sensitivity analyses to different factors, such as wind energy capacity factors or technology costs
    corecore